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Abstract Establishing a rapid, accurate, and practical energy
consumption evaluation model for machine tools is essential
to save energy and increase profits in the manufacturing in-
dustry. Relationships between spindle rotation speed, cutting
parameters, material removal rate, specific energy consump-
tion, cutting power, and material removal power were exper-
imentally analyzed, and the limitation and the limitation and
differences between several machine tools’ cutting power
evaluation models were discussed. Cutting parameters or ma-
terial removal rate were regarded as independent variable in
those models. By comparing the models’ fitting and predicted
results, it draw a conclusion that the model treating cutting
parameters as independent variable had greater accuracy but
depends on a large quantity of experimental data. The model
treating material removal rate as independent variable can also
obtain a good fit and reduce the number of necessary experi-
ments. Therefore, it is a rapid method to estimate the cutting
energy consumption of machine tools for the latter model. In
addition, the paper puts forward an improved cutting power
model, which considers the influence of the spindle rotation
speed on the material removal power during the milling pro-
cess. The proposed model can predict a milling machine’s
cutting power more accurately.
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Abbreviation
ap Cutting depth (mm)
as Cutting width (mm)
d Workpiece diameter (mm)
D Cutting tool diameter (mm)
E The total energy consumption of the machine

tool (kWh)
Ecut Cutting energy consumption (kWh)
fz Feed per tooth (mm)
f Feed per revolution (mm/r)
F Cutting force (N)
H Brinell hardness (N/mm2)
MRR Material removal rate (mm3/s)
n Spindle rotation speed (r/min)
Pin Machine tool input power (kW)
Pcut Machine tool input power in cutting (kW)
Pidle Machine tool input power in no load (kW)
Pmaterial Material removal power (kW)
Pspindle Spindle power (kW)
Pstandby Machine tool standby power (kW)
Pauxiliary Machine tool auxiliary equipment power (kW)
Pfeed Feed shaft power (kW)
SEC Specific energy consumption (J/mm3)
ta The spindle acceleration time (ms)
vc Cutting speed (mm/min)
vf Feed speed (mm/min)
Vmaterial Material removal volume (mm3)
VB Average flank wear width of cutting tool (mm)
z The number of teeth on the cutting tool
β Normal friction angle (rad)
γ Cutting tool rake angle (rad)
ηs Shear flow angle (rad)
λ Oblique angle (rad)
φ Shear plane angle (rad)
φin Angle of a cutting tooth entering a cutting zone (rad)
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ψ Immersion angle (rad)
τ Workpiece flow stress (Pa)
μ Coefficient of sliding friction between a

workpiece and cutting tool

1 Introduction

With the development of human society, contradictions be-
tween economic development and environmental constraints
have become more apparent. Manufacturing is the main crea-
tor of jobs and wealth and also the source of many environ-
mental problems. It is necessary to create sustainable
manufacturing solutions that reduce costs, resource consump-
tion, energy consumption, and environmental emissions [1].
The US Energy Information Administration (EIA) energy sta-
tistics yearbook pointed out that in 2013, its industrial sector
energy consumption accounted for 34% and carbon dioxide
emissions associated with industrial energy accounted for
27.5% of the country’s total emissions. In addition, carbon
dioxide emissions in manufacturing accounted for 81.7% out
of the entire industrial field [2]. According to the data from
China’s national bureau of statistics, the manufacturing energy
consumption accounted for 57.3% of its total energy con-
sumption in 2013 [3], and it was said that the emissions of
environmental pollution caused about 70% from the
manufacturing [4]. In addition to environmental concerns,
the EIA indicated that from 2013 to 2040, the retail prices of
industrial electricity and oil are expected to rise at an average
annual growth rate of 0.7% in the USA [2].

Global warming, growth of demand for energy, and rising
energy prices have required the manufacturers to look for
high-energy efficiency and low-cost manufacturing plans,
and academic circles have begun to pay more attention to
energy consumption models and energy efficiency research
with regard to manufacturing [5, 6]. Machining process indus-
try is an important part of manufacturing, in which machine
tools are widely used [7]. The environmental impact of ma-
chine tools is mainly due to consuming large amounts of elec-
tric energy and indirectly generating carbon dioxide emissions
[8]. An accurate energy consumption evaluation model is use-
ful for companies to build energy labels for machine tool
products or associated products. The standard ISO14955-1
for machine tools focuses on using phase of energy supply
and consumption to carry out environmental impact assess-
ment and energy-saving design. However, the international
standard on metal cutting and metal forming machine tool
energy efficiency test specification is still being written [9].
Assessing machining process energy consumption accurately
and quickly can provide a basis for judging and decision-
making guidance in energy-saving machine tool design and
process planning, which is the premise of improving the en-
ergy efficiency of machining systems [10, 11]. Therefore,

establishing rapid, accurate, and practical energy consumption
evaluation models for machine tools under various machining
conditions is very important for saving energy in the
manufacturing industry [12].

The key to evaluate the energy consumption of a machine
tool is to understand the power characteristics of its compo-
nents. The power or energy consumption characteristics not
only depend on its performance of internal composition sys-
tem and running state changes but also on the object being
processed and processing conditions. Domestic and foreign
scholars have put forward different machine tool power or
energy consumption evaluation models [5]. Liu et al. [13]
established an energy consumption model of a machine tool’s
main transmission system, which included running states such
as cutting, no load, and start. The related equations are:

E ¼ ∫t10 Pin tð Þdt þ P0t2 þ P0t3 þ ∫t30 Pa Pcut tð Þð Þdt þ ∫t30 Pcut tð Þdt
� �

ð1Þ

Pa ¼ α1Pcut tð Þ þ α2Pcut tð Þ2 ð2Þ

Where t1~t3 represents time of start, no load, and cutting.
Pin is input power of the main transmission system. P0 is idle
power. Pa is the mechanical and electrical load loss power, and
it was the function of the cutting power (Pcut), a1 and a2 were
additional load loss coefficients obtained by fitting.

Lv et al. [14] regarded energy consumption units as move-
ment elements of the machine tool, establishing a power mod-
el of turning machine. Their equations were:

P ¼ PSO þ PL þ PCC þ PCFS þ Pspindle

þ Px þ Py þ Pz
� �þ PTS þ PTC þ Pcut ð3Þ

Pcut ¼ 1þ αð ÞFvc ð4Þ

Where PSO,PCFS, PCC,PL,PTS, and PTC represented power
related to the basic module, cooling device, chip removal de-
vice, lighting device, tool choose and tool change device re-
spectively. Pspindle, Px, Py, and Pzwere spindle power and feed
power in x/y/z directions, respectively. Fvc was theoretical
cutting power. a was an additional load loss coefficient due
to cutting power. The calculation of cutting power in literature
depends on the acquisition of additional load loss coefficients
[13, 14]. Collecting such coefficients requires a large number
of experiments, and the rapid acquisition of such data remains
an area for further study.

Zhong et al. [15] pointed out that a material removal power
of turning machine can be transformed into the power caused
by cutting force, as shown in Eq. (5).

Pmaterial ¼ Fvc ¼ c1 � apc2 f c3 vc
c4 � k

� �
vc
: ð5Þ

Where material removal power (Pmaterial) was the material
removal power, the power at the tip of the cutting tool, F was
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the cutting force, vc was the cutting speed, ap was the cutting
depth, f was the feed per revolution, c1 was the correlation
coefficient determined by workpiece and cutting condition, k
was an associated factor, and c2~c4 represented corresponding
indexes, whose values were determined by empirical research.

Munoz et al. [16] established a cutting energy model based
on the plastic deformation force of metal and material removal
velocity vector, as shown in Eq. (6).

Ecut ¼ cos β−γð Þcosηscosλþ cos φþ β−γð Þsinηssinλ
cos φþ β−γð Þ

� �
τ � Vmaterial

sinφcosλ

ð6Þ

Where β was normal friction angle, γ was the cutting tool
rake angle, ηs was the cutting flow angle, φ was shear plane
angle, τ was plastic flow stress of the work piece, λ was the
inclination angle, and Vmaterial was material removal volume.

Kishawy et al. [17] established a cutting energy model Ecut,
which included plastic deformation energy of primary and
shear zones, and metallic particles energy of stripping. The
calculation model contained the strain hardening index, shear
angle, cut chip friction force, cutting chip thickness ratio,
Poisson’s ratio for the material, Young’s modulus, fracture
stress, and crack length parameters. The latter two cutting
energy models in literature are complex, and the accuracy
can be improved.

Shao et al. [18] established a cutting power model such as
Eq. (7), which considered the cutting tool parameters, cutting
tool wear, and cutting parameters.

Pcut ¼ znDap Kh−c f z cosφin−cos φinþ ψð Þð Þ þ μHVBψ
n o.

2 ð7Þ

Where z was number of cutter teeth, D was cutting tool
diameter, c was the chip thickness constant, fz was feed per
tooth, H was the workpiece Brinell hardness, K was the cut-

ting force constant, VB was average flank wear width of the
cutting tool,μ was the coefficient of sliding friction between a
workpiece and cutting tool, φin was angle of a cutting tooth
entering a cutting zone, and Ψ was the immersion angle.

Yoon et al. [19] pointed out that there was a linear relation-

ship between cutting power and the amount of tool wear VB.
It is difficult to measure the consistency between cutting pa-
rameters and cutting tool life, so the model based on tool wear
has some difficulties calculating the energy consumption of
the machining process.

Although the performance of machine tools, workpiece ma-
terials, cutting tool, and cutting parameters will cause a change
in a machine tool’s power, it is difficult to develop a machine
tool energy consumption model taking all factors into account,
because it requires a large amount of experimental data to train
and fit the predicting model for a given process.

The cutting power of a machine tool is mainly affected by
cutting parameters. Therefore, in order to quickly estimate the

energy consumption of a machine tool during a cutting pro-
cess, an important concept has been developed, namely the
specific energy consumption (SEC). SEC is defined as the
energy required to remove materials of a unit volume or qual-
ity. SEC can be expressed as:

SEC ¼ E
Vmaterial

or SEC ¼ Pcut

MRR
ð8Þ

Where the material removal rate (MRR) is a function of
cutting parameters. SEC covers the mapping relationship be-
tween MRR and cutting energy consumption. Although the
existing models of SEC are not accurate, SEC has been widely
used because it is easy to ascertain the model coefficients.

The following studies put forward similar SEC models for
machine tools. Gutowski et al. [20] dividedmachine tool pow-
er into idle power and material removal power during the
cutting process:

Pcut ¼ Pidle þ k �MRR ð9Þ

wherePidle is idle power and k ×MRR represents the power
required remove material. Gutowski’s research pointed out
that the constant k(kJ/cm3) depended on the physical charac-
teristics, which were related to workpiece material and the
cutting tool. Diaz et al. [22] obtained an inverse ratio curve
relationship between the SEC and the MRR by changing cut-
ting depth and cutting width. Literatures such as [20–22] put
forward of similar SEC models of machine tools, like as:

SEC ¼ c1 þ c2
MRR

ð10Þ

Actually, the Eq. (10) is a variable form of the Eq. (9)
divided by the MRR on both ends. Where c1~c2 are fitting
coefficients.

Li et al. [23] considered Pidle to consist of standby power
(Pstandby) and spindle power (Pspindle). Pspindle is a linear func-
tion of the spindle rotation speed n:

Pspindle ¼ a� nþ b ð11Þ

Li et al. [23] also put forward cutting power and SEC of a
milling machine as:

Pcut ¼ Pstandby þ a� nþ bþ k �MRR ð12Þ

and

SEC ¼ c1 þ c2 � n
MRR

þ c3
MRR

ð13Þ

Where c1~c3 were fitting coefficients. They additionally
discussed the meaning of coefficients and pointed out that b
was power loss caused by the motor and transmission chain of
the main drive system. a and k were coefficients affected by
the inherent properties of a given machine tool and workpiece
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materials. Their model showed an improved accuracy due to
disassembling Pidle and taking n into account as part of their in
SEC evaluation in the milling process.

Guo et al. [24] pointed out that the SEC of a turning ma-
chine was not only related to the cutting parameters but also
related to the workpiece diameter d, because cutting speed vc
of turning was related to n and d. Their SEC model of a
turning process was:

SEC ¼ c1
vc � v f � ap

þ c2 � vcc4 � v f c5 � apc6 � dc7 : ð14Þ

Where c1~c7 were fitting coefficients.
The SECmodel of a machine tool can be acquired by using

a three-factor three-level orthogonal experiment after a specif-
ic cutting tool and material are given. The coefficients in the
SEC model can be quickly determined with less experimental
data required, which increases the convenience of estimating a
machine tool’s energy consumption during the cutting process
[25]. The main arguments surrounding SEC models in litera-
ture [20–23] is that they consider the same MRR, which leads
to the same SEC and Pcut. Jia et al. [26] pointed out that when
using different combinations of cutting parameters to get the
same MRR, the actual measured cutting power is not the
same. However, there is still a lack of research that discusses
the differences between these models with regard to MRR or
cutting parameters as an independent variable in detail.
Establishing an accurate cutting power model is the founda-
tion of evaluation and optimization of the machine tool’s en-
ergy consumption. The accuracy of existing models remains
to be further increased. Firstly, this paper analyzed the rela-
tionships between spindle rotation speed (n), cutting parame-
ters, MRR, SEC, Pcut, and Pmaterial. Then, this paper discussed
the differences between models regarding MRR or cutting
parameter as independent variable to predict cutting power.
Finally, this paper puts forward an improved cutting power
model for a milling process that considers the influence of
the spindle rotation speed on material removal power. The
improved model is proved to increase prediction accuracy of
milling machine cutting power.

2 The machine tool energy consumption model
and hypothesis

2.1 The introduction of basic model

An energy consumption model usually refers to the power
model. Machine tool energy consumption status generally in-
cludes starting state, acceleration state, deceleration state,
standby state, air-cutting state, cutting state, and auxiliary sta-
tus. This paper does not make discussion on power of starting,
acceleration, and deceleration states due to its short time.

(1) Standby power: power required to remain stable after a
machine has powered up. It is used to maintain the nor-
mal operation of the power components of a machine
tool such as the numerical control system, fan, display,
and lubrication system. These components generally re-
main open after the machine starts and will not shut
down unless the machine is turned off. Usually, the
standby power can be expressed as:

Pstandby ¼ Pfan þ Pcontrol−panel þ Pscreen þ Plubrication ð15Þ

(2) Idle power: refers to the input power of the machine tool
when the spindle and feed axis have already begun to
move, but the cutting tool has not contacted with the
workpiece. Some studies also call it air-cutting power,
meaning power under no load. Pidle contains instanta-
neous Pstandby, Pspindle, and feed power (Pfeed), as shown
in Eq. (16).

Pidle ¼ Pstandby þ Pspindle þ Pfeed ð16Þ

The power of the spindle is a linear function of spindle
rotation speed, n (r/min), when idling at a constant speed, as
shown in Eq. (17).

Pspindle nð Þ ¼ a� nþ b ð17Þ

Where a and b are fitting coefficients that relate to the
spindle motor power loss and the friction loss [26]. The power
of X/Y/Z feed shaft is a linear function of feed speed vf, as
shown in Eq. (18),Where a′ and b′ are also fitting coefficients.
In general, Pfeed is a very small proportion of overall input
power of the machine, so it can be seen as constant C or
neglected [23].

Pfeed v f
� � ¼ a

0 þ b
0 � v f ≈C ð18Þ

(3) Cutting power: the total input power of the machine tool
when materials are cut. This section contains the Pstandby,
Pspindle (n), Pfeed (vf), and Pmaterial, as shown in Eqs. (19)
and (20). Gutowski et al. [20] think that the cutting pow-
er of machine tool includes constant power and variable
material removal power, as Eq. (9). Li et al. [23] im-
proves it on the basis of Gutowski et al.’s [20] research,
as shown in Eq. (12), and he thinks that Pcut includes the
standby power, air-cutting power, and material removal
power. Because the feed shaft power is small, it is
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ignored in Li’s research. Equation (20) is reasoned out
with the models of Gutowski et al. [20] and Li et al. [23].

Pcut ¼ Pstandby þ Pspindle nð Þ þ Pfeed v f
� �þ Pmaterial ð19Þ

Pmaterial ¼ k �MRR ð20Þ

The previous three parts of Eq. (19) are mainly affected by
machine tool automation, energy transfer efficiency of the
mechanical system, electric energy, and hydraulic system con-
version efficiency, which embody the inherent energy con-
sumption characteristics of the machine tools. Pmaterial refers
to the additional power neededwhenmachine tools are cutting
material, and k is the coefficient related to the physical char-
acteristics in the machining process. Pmaterial is closely related
to the material removal rate and cutting conditions. For the
milling process:

MRR mm3
.
s

� �
¼ v f � ap � ae

60
ð21Þ

Where vf is the feed speed of milling cutter relative to the
workpiece, ap is cutting depth, and ae is cutting width [23].
For the turning process:

MRR mm3
.
s

� �
¼ vc � f � ap

60
ð22Þ

Where vc is cutting speed and f is feed per revolution [14].

(4) Auxiliary power: the power generated when auxiliary
function components of a machine tool selectively open
during the machining process. Auxiliary function com-
ponents include lighting device, cooling liquid device,
chip removal device, tool change device, etc. Auxiliary
power calculation is shown as Eq. (23), Where i1~i4 are
given values 0 or 1. Here, 0 means the auxiliary process
is closing while 1 means opening.

Pauxiliary ¼ Pcool � i1 þ Pchip remove � i2 þ Ptool � i3 þ Plight � i4 ð23Þ

2.2 Improved cutting power model and some
considerations

In order to forecast machine tool energy consumption more
accurately in the cutting process, this paper puts forward an
improved cutting power model of the milling machine. Some
considerations are given as follows:

(1) Models proposed by Li et al. [23] and Gutowski et al.
[20] as Eqs. (9)–(12) are easy to understand and easy to
convert to SEC which can be used to estimate cutting
energy consumption conveniently. Though some studies

have pointed out that the same MRR obtained by differ-
ent cutting parameters usually cause different cutting
power. However, there are still lack discussion and ex-
perimental research about the relationship among cutting
parameters, MRR, SEC, Pcut, and Pmaterial in detail. This
makes the models like Eqs. (9)–(12) remain to be illus-
trated in the accuracy of the energy consumption predic-
tion of cutting process.

(2) TheMRR for turning progress is calculated using Eq. (21),
vc is cutting speed, which is the rotational linear velocity of
the workpiece. vc implies a relationship between the rota-
tion speed n and workpiece diameter (D), so Pmaterial con-
siders n in terms of the turning process. However, the
MRR for a plane milling process is calculated using
Eq. (22). vf is themovement speed ofmilling cutter relative
to the workpiece. In this instance, when cutting tool diam-
eterd is given, the cutting speed vc depends on the speed of
n in the milling process. While Li et al.’s [23] milling
power model, as Eq. (12), does not consider the effects
of rotation speed n on Pmaterial. Hence, this paper assumes
that Pmaterial is a function associated with n, namely
Pmaterial = f(n,MRR) or Pmaterial = f(n,ap,ae,vf).

(3) Because the feed power is very small during the milling
process, it can be neglected in the cutting power calcula-
tion. Namely, the cutting power of milling process is

Pcut ¼ Pstandby þ Pspindle nð Þ þ Pmaterial ð24Þ

The SEC model of the milling process can be derived as

SEC ¼ Pcut

MRR
¼ Pstandby þ Pspindle nð Þ þ Pmaterial

MRR
ð25Þ

(4) In order to validate the accuracy of the improved cutting
power model, this paper will study the results of three
groups of experiments. The first group consists of 35
tests through our work, the second group consists of 9
tests through our work, and the third group consists of 18
tests whose data is collected fromTable 2 of Li et al. [23].
The improved model and models of Gutowsk et al. [20]
and Li et al. [23] are compared by examining the results
of the three groups of data individually to determine if
increased accuracy was achieved.

(5) The cutting power test experiments were conducted using
a cemented carbide vertical milling cutter to conduct plane
milling on no. 45 steel. In consideration, the carbide ma-
terial is widely used in production of all kinds of cutting
tools. Carbide material expands the machineable material
ranges of the same cutting tool; no. 45 is a kind of com-
mon carbon structural steel, which is widely used in me-
chanical processing and has a good cutting performance.
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3 Experimental details

The experiments collected energy consumption data (power,
current, voltage information, etc.) of a CNC milling machine
(XKA714B/B) by using aYokogawa CW240 clamp-type pow-
er meter. These energy consumption data were read and ana-
lyzed by using accessory analysis software APE240. Related
machine tool and experimental platform are illustrated in Fig. 1,
and experimental equipment details are given in Table 1.

3.1 Standby power and auxiliary power

When the machine tool starts, test its standby power and aux-
iliary power under the condition of stable, collect the energy
consumption data in 1 min, respectively, then calculate the
mean as P s t a n d b y = 0 .63 kW, P c o o l = 0 .26 kW,
Ptool = 0.66 kW, and Plight = 0.05 kW. This machine tool has
no automatic tool change function and chip removal function.
Ptool is power of the cutter’s hydraulic clamping device in
loosened state.

3.2 Idle power

The machine tool is tested when spindle speed accelerates
from 0 r/min to a constant rotation speed n (r/min); the

energy consumption data are collected in 1 min, respec-
tively. The average value of test results can be seen in
Tables 2 and 3.

The parameters of the spindle power model are determined
by fitting the data in Table 2 according to Eq. (17). The fitting
results are shown in Fig. 2, namely:

Pspindle nð Þ ¼ 0:0497þ 2:19479� 10−4 � n

Generally, if the absolute value of correlation coeffi-
cient R-square is in range of 0.9 to 1, it can be concluded
linear correlation is strong between regression variables.
The correlation coefficient R-square is 0.99196, demon-
strating a strong linear correlation and the effectiveness of
the established spindle power formula under no load.

Next, the feed speed it set some value from 100 to
1000 (mm/min) to test the feed power of the x/y/z-axes.
Table 3 shows the results of the slow feed power experi-
mental data. With the x/y-axes feed speed increasing grad-
ually, change of the feed power is not very obvious. The
feed power of the z-axis in the upward direction is larger
than that of the other direction, because more energy is
needed to overcome friction and gravity. However the
feed power accounted for a very small proportion of the
total input power of this machine tool. Hence, it can be

Fig. 1 Machine tool to be tested and experimental platform
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Table 1 The experimental
equipment details Name Information

Cutting tool Brand GM-4E-D12.0 (Zhuzhou Cemented
Carbide Cutting Tools Co., Ltd)

Cutter diameter 12 mm

Cutter coating TiAIN

Number of teeth 4

Spiral angle 45°

Cutter material Carbide material

Proper material to cut Carbon steel, alloy steel, and cast iron

Cutting material Grade 45

Chemical composition mass fraction

C 0.42~0.50%

Si 0.17~0.37%

Mn 0.50~0.80%

Cr ≤0.25%
Ni ≤0.30%
Cu ≤0.25%
The mechanical properties of σb/MPa = 600

The mechanical properties of σs/MPa = 355

Delivery status without heat treatment, steel hardness of HBS ≤229
Machine tool Brand XKA714B/B (Beijing no. 1 Machine Tool Plant)

Table area (width × length) 400 × 1100 mm

x-axis stroke 600 mm

y-axis stroke 450 mm

z-axis stroke 500 mm

Spindle speed 100~5000 mm/min

Feed rate 6~3200 mm/min (X/Y); 3~1600 mm/min (Z)

Fast moving speed 8000 mm/min (X/Y); 4000 mm/min (Z)

Positioning accuracy ±0.015 mm

Spindle motor rated power 5.5/7.5 kW

Spindle torque 220 Nm

Feed torque 14 Nm

Weight 3800 kg

Outline dimension 2130 × 1700 × 2380 mm

Power instrument YOKOGAWA CW240

Power analysis software APE240

Sample frequency 100 ms

Data fitting analysis tool Origin8

Table 2 Spindle power experimental results under no load

n (r/min) 500 700 1100 1500 1900 2300 2700 3100 3500 3900

Pidle (kw) 0.81 0.86 0.92 0.97 1.09 1.17 1.26 1.35 1.45 1.57

Pspindle (kw) 0.18 0.23 0.29 0.34 0.46 0.54 0.63 0.72 0.82 0.94

Acceleration time (ms) 400 1400 2700 3700 4700 5800 6600 7600 8600 9500

Max Pidle (kw) 1.14 1.17 1.23 1.45 1.65 1.88 2.07 2.28 2.49 2.78

Max Pspindle (kw) 0.51 0.54 0.60 0.82 1.02 1.25 1.44 1.65 1.86 2.15
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regarded as constant C. According to the experimental
results, the average values of feed shaft power in each
direction as: Pfeed − Y = 0.018 kW, Pfeed − X= 0.0079 kW,
Pfeed − Zdown = 0.0208 kW, and Pfeed − Zup = 0.094 kW.

3.3 Cutting power

To explore the relationships among the spindle rotation
speed n, cutting parameters, the MRR, SEC, Pcut, and
Pmaterial, the experiment is designed utilizing Table 4.
The relationship between n and power can be obtained
by comparing horizontal items in Table 4. In the middle
of Table 4, the same MRR is obtained by changing cut-
ting parameters in column items, which are used to com-
pare the changes in a machine tool’s power. Table 5
shows the experimental results of Table 4 for the first
set of 35 tests.

An orthogonal experiment with four factors and three
levels is designed in Table 6 for the range analysis of
cutting parameters on Pcut and Pmaterial. Table 7 shows
the experimental results of Table 6 (the second group
consists of nine tests). Where k1~k3 are arithmetic mean
of the results of Pcut test in any columns in Table 7 while
the factor at the case of level ith, and the R1 is the range
of factor about the Pcut, respectively. Where k1′~k3′ are
arithmetic mean of the results of Pmaterial test in any col-
umns in Table 7 while the factor at the case of level ith,

and the R2 is the range of factor about the Pmaterial, re-
spectively. Pmaterial is calculated indirectly with the differ-
ence between Pcut the Pidle. Figure 3 shows the milling
process and cutting tool path.

The experimental data of the first group (fir-g), second
group (sec-g), and third group (thi-g; the third group is consist
of 18 tests referring to Table 2 from Li et al. [23]) are analyzed
using the existing model based on Gutowski et al. [20] and Li
et al. [23], and the proposed model of SEC and Pcut, respec-
tively, and in order to analyze and compare the results of
fitting, a flow chart in Fig. 4 shows how these models are
being compared. For convenience, these models are renamed
respectively as follows:

A. Model of Gutowski et al. [20]: Pcut1 =Pidle + c1 ×MRR

and SEC1 ¼ c
0
1 þ c

0
2

MRR

B. Model of Li et al. [23]: Pcut2 = c1+ c2 ×n+ c3 ×MRR and

SEC2 ¼ c
0
1 þ c

0
2�n
MRR þ

c
0
3

MRR

C. Proposed model (considering the effect of n on Pmaterial):

Pcut3 ¼ c1 þ c2 � nþ c3 � nc4 �MRR and SEC3

¼ c
0
1 � nc

0
2 þ c

0
3 � n
MRR

þ c
0
4

MRR

Pcut4 ¼ c1 þ c2 � nþ c3 � nc4 � v f c5 � apc6

� aec7 and SEC4

¼ c
0
1

MRR
þ c

0
2 � n
MRR

þ c
0
3 � nc

0
4 � v f c

0
5 � apc

0
6 � aec

0
7

MRR

Table 3 Feed power experimental results under no load

vf (mm/min) 100 200 300 400 500 600 700 800 900 1000

Pfeed (kw)

x-axis 0.006 0.006 0.007 0.007 0.007 0.008 0.008 0.009 0.011 0.01

y-axis 0.008 0.009 0.01 0.015 0.018 0.021 0.021 0.025 0.027 0.029

z-axis (up) 0.067 0.071 0.079 0.085 0.088 0.091 0.093 0.097 0.13 0.14

z-axis (down) 0.018 0.019 0.021 0.021 0.021 0.022 0.022 0.021 0.021 0.022
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Equation y = a + b*x

Weight No Weighting

Residual Sum of 

Squares

0.00434

Adj. R-Square 0.99196

Pspindle

Pspindle

Value Standard Error

Intercept 0.0497 0.01578

Slope 2.19479E-4 6.58442E-6

Fig. 2 Spindle power fitting curve under no load

Table 4 Factor and level design in experiment (the first group)

n = 500
(r/min)

n =
900

n =
1300

n =
1700

n =
2100

vf
(mm/
min)

ap
(mm)

ae
(mm)

MRR
(mm3/s)

18 18 18 18 18 120 1.5 6
42 42 42 42 42 140 2 9
4 4 4 4 4 160 0.5 3
18 18 18 18 18 180 2 3
10 10 10 10 10 200 1 3
33 33 33 33 33 220 1.5 6
18 18 18 18 18 240 0.5 9
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The fitting coefficient results are shown in Tables 8 and 9.
ANOVA results of these models are shown in Tables 10 and
11. Where c1~c7 and c′1~c′7 are fitting coefficients, R-sq. is
correlation coefficient R-square (Adj), SS is sum of square,
MS is mean square, F is F value, and P is prob > F.

3.4 Cutting power model validation and comparison

The experimental conditions of the first group are consistent
with the second group in this paper. Fitting coefficient results
of Pcut and SEC of the first group are used to predict tests no. 3
and no. 4 of the second group. The predicted values and the

accuracy of different fitting models are shown in Table 12 and
Fig. 5.

Table 5 The experimental results
of the first group Test

no.
n vf ap ae MRR

(mm3/s)
Pspindle

(kW)
Pidle

(kW)
Pcut

(kW)
Pmaterial

(kW)
SEC
(J/mm3)

1 500 140 2 9 42 0.18 0.81 0.93 0.12 22.143

2 900 140 2 9 42 0.26 0.89 1 0.11 23.810

3 1300 140 2 9 42 0.31 0.94 1.1 0.16 26.190

4 1700 140 2 9 42 0.42 1.05 1.19 0.14 28.333

5 2100 140 2 9 42 0.50 1.13 1.29 0.16 30.714

6 500 180 2 3 18 0.18 0.81 0.89 0.08 49.444

7 900 180 2 3 18 0.26 0.89 0.92 0.03 51.111

8 1300 180 2 3 18 0.31 0.94 1.03 0.09 57.222

9 1700 180 2 3 18 0.42 1.05 1.13 0.08 62.778

10 2100 180 2 3 18 0.50 1.13 1.22 0.09 67.778

11 500 120 1.5 6 18 0.18 0.81 0.89 0.08 49.444

12 900 120 1.5 6 18 0.26 0.89 0.93 0.04 51.667

13 1300 120 1.5 6 18 0.31 0.94 1.03 0.09 57.222

14 1700 120 1.5 6 18 0.42 1.05 1.13 0.08 62.778

15 2100 120 1.5 6 18 0.50 1.13 1.24 0.11 68.889

16 500 220 1.5 6 33 0.18 0.81 0.91 0.1 27.576

17 900 220 1.5 6 33 0.26 0.89 0.98 0.09 29.697

18 1300 220 1.5 6 33 0.31 0.94 1.09 0.15 33.030

19 1700 220 1.5 6 33 0.42 1.05 1.19 0.14 36.061

20 2100 220 1.5 6 33 0.50 1.13 1.3 0.17 39.394

21 500 200 1 3 10 0.18 0.81 0.89 0.08 89.000

22 900 200 1 3 10 0.26 0.89 0.93 0.04 93.000

23 1300 200 1 3 10 0.31 0.94 0.99 0.05 99.000

24 1700 200 1 3 10 0.42 1.05 1.09 0.04 109.000

25 2100 200 1 3 10 0.50 1.13 1.19 0.06 119.000

26 500 160 0.5 3 4 0.18 0.81 0.87 0.06 217.500

27 900 160 0.5 3 4 0.26 0.89 0.92 0.03 230.000

28 1300 160 0.5 3 4 0.31 0.94 0.98 0.04 245.000

29 1700 160 0.5 3 4 0.42 1.05 1.06 0.01 265.000

30 2100 160 0.5 3 4 0.50 1.13 1.15 0.02 287.5

31 500 240 0.5 9 18 0.18 0.81 0.89 0.08 49.444

32 900 240 0.5 9 18 0.26 0.89 0.93 0.04 51.667

33 1300 240 0.5 9 18 0.31 0.94 1.01 0.07 56.111

34 1700 240 0.5 9 18 0.42 1.05 1.12 0.07 62.222

35 2100 240 0.5 9 18 0.50 1.13 1.21 0.08 67.222

Table 6 Factors and levels design in orthogonal experimental (the
second group)

Factor vf
(mm/min)

Level Factor
ap (mm)

Level Factor
ae (mm)

Level Factor n
(r/min)

Level

vf1 120 ap1 0.5 ae1 3 n1 500

vf2 180 ap2 1.5 ae2 6 n2 1300

vf3 240 ap3 2 ae3 9 n3 2100
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According to Table 12, it can be seen that the proposed
model SEC3 and Pcut3 have a higher predicting accuracy
compared with other models. From Tables 8, 9, 10, and 11,
it can also be found that the optimal fitting correlation models
are SEC3 and Pcut3, due to considering n’s effect on Pmaterial in
the milling process.

(1) In the first group experiments:

R - s q . A d j ( S E C 3 ) = 0 . 9 9 9 6 > R - s q .
Adj(SEC2) = 0.9993 > R-sq. Adj(SEC1) = 0.97424

R - s q . A d j ( P c u t 3 ) = 0 . 9 7 6 5 3 > R -
sq.Adj(Pcut2) = 0.97088 > R-sq.Adj(Pcut1) = 0.96228

(2) In the second group experiments:

R - s q . A d j ( S E C 3 ) = 0 . 9 9 9 7 5 > R - s q .
Adj(SEC2) = 0.9996 > R-sq. Adj(SEC1) = 0.97618

R - s q . A d j ( P c u t 3 ) = 0 . 9 7 7 2 4 > R -
sq.Adj(Pcut2) = 0.95819 > R-sq.Adj(Pcut1) = 0.94636

(3) In the third group experiments:

R - s q . A d j ( S E C 3 ) = 0 . 9 9 9 8 3 = R - s q .
Adj(SEC2) = 0.99983 > R-sq. Adj(SEC1) = 0.97463

R - s q . A d j ( P c u t 3 ) = 0 . 9 9 9 8 3 > R -
sq.Adj(Pcut2) = 0.99355 > R-sq.Adj(Pcut1) = 0.98395

However, fo r the proposed mode l P c u t4 , R -
sq.Adj(Pcut4)0.98071 > R-sq.Adj(Pcut3) = 0.97653 in the
f i r s t g r o u p e x p e r i m e n t s a n d R - s q .
Adj(Pcut4) = 0.31083 < R-sq.Adj(Pcut3) = 0.97724 in the

Table 7 The experimental results
of the second group Test

no.
vf ap ae n MRR

(mm3/s)
Pidle

(kW)
Pcut

(kW)
Pmaterial

(kW)
SEC
(J/mm3)

1 120 0.5 3 500 3 0.81 0.83 0.02 276.667

2 120 1.5 6 1300 18 0.94 1.03 0.09 57.222

3 120 2 9 2100 36 1.13 1.36 0.23 37.778

4 180 0.5 6 2100 9 1.13 1.17 0.04 130.000

5 180 1.5 9 500 40.5 0.81 0.95 0.14 23.457

6 180 2 3 1300 18 0.94 1.03 0.09 57.222

7 240 0.5 9 1300 18 0.94 1.01 0.07 56.111

8 240 1.5 3 2100 18 1.13 1.24 0.11 68.889

9 240 2 6 500 48 0.81 0.96 0.15 20.000

k1 1.073 1.003 1.033 0.913

k2 1.05 1.073 1.053 1.023

k3 1.07 1.117 1.107 1.257 Range about the Pcut: n > ap >ae > vf
R1 0.023 0.114 0.074 0.344

k1′ 0.113 0.043 0.073 0.103

k2′ 0.09 0.113 0.093 0.083

k3′ 0.11 0.157 0.147 0.127 Range about the Pmaterial: ap > ae >n> vf
R2 0.023 0.114 0.074 0.044

115

7
0

-x

-Y

Tool
path

Fig. 3 Milling process and
cutting tool path
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second group experiments. This kind of phenomenon is
because the model Pcut4 with independent variables of n,
vf, ae, and ap, needs to solve too many unknown coeffi-
cients. With only nine tests in the second group experi-
ments, the fitting result of Pcut4 is not ideal. Whereas, it is
appropriate to solve the seven unknown coefficients in the
first group experiments through 35 tests data.

So, if using a small amount of experimental data to
rapidly predict Pcut of a machine tool, the method using
MRR as the independent variable shows a better data fit.
Using MRR as the independent variable is recommended
in instances with less experimental data because only a

few unknown coefficients need to be solved. Also,
Pmaterial takes up a small proportion of input power.
Additionally, it is easy to get similar Pmaterial values for
the same MRR while cutting parameters vary (in
Table 13, variation of Pmaterial is small for the same
MRR).

For SEC, differences in the fitting correlations between
SEC3 and SEC4 are not obvious. This is because SEC mainly
depends on MRR and n, and shows little sensitivity when
considering vf, ae, and ap.

In addition, Akaike information criterion (AIC) can esti-
mate the quality of statistical models for given test data, and

Fig. 4 Model comparing flow
chart

Table 8 Fitting coefficient results of SEC1~SEC4

Model Test c1 c2 c3 c4 c5 c6 c7 R-sq.

SEC1 fir-g 3.07462 984.03563 – – – – 0.97424

SEC1 sec-g 14.19496 810.29243 – – – – – 0.97618

SEC1 thi-g 11.39887 614.02334 – – – – – 0.97463

SEC2 fir-g 3.07462 0.18259 746.66333 – – – – 0.99933

SEC2 sec-g 3.40163 0.20435 716.65762 – – – 0.9996

SEC2 thi-g 5.1295 0.12986 478.52939 – – – – 0.99983

SEC3 fir-g 5.72485 × 10−9 785.64082 2.72708 0.1553 – – 0.9996

SEC3 sec-g 0.54574 0.97826 0.17519 0.00385 – – 0.99975

SEC3 thi-g −0.02816 0.1121 0.12757 2.25423 – – 0.99983

SEC4 fir-g 767.74494 0.18259 0.00657 −9.44931 −2.16739 −16.9579 13.12638 0.99826

SEC4 sec-g 1186.67551 0.83379 −20.51266 0.62167 −0.04324 −0.07143 −0.06917 0.99997

SEC4 thi-g 479.18895 0.12108 0.07085 0.24665 0.79883 0.81507 0.7688 0.9998
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it can explain the tradeoff between the goodness of fit of
models. The assumption is that the error of the model is inde-
pendent of the normal distribution. Where m is number of the
observation, the RSS is the sum of squares for error, and k is
number of parameters, then:

AIC ¼ 2k þ m2ln RSS
.
m

� �

The preferred model should be the one with the
smallest numerical AIC value. In this paper, AIC are used
to compare different models using test data of the fir-g
and sec-g. The calculated value of AIC can be seen in
Table 13.

From Table 13, it can be seen that the SEC3 and Pcut3
models are intended to be better models in some degree,

Table 9 Fitting coefficient results of Pcut1~Pcut4

Model Test c′1 c′2 c′3 c′4 c′5 c′6 c′7 R-sq.

Pcut1 fir-g 0.00374 – – – – – – 0.96228

Pcut1 sec-g 0.00423 – – – – – – 0.94636

Pcut1 thi-g 5.30536 – – – – – – 0.98395

Pcut2 fir-g 0.70981 2.12857 × 10−4 0.00293 – – – – 0.97088

Pcut2 sec-g 0.65398 2.39865 × 10−4 0.00426 – – – – 0.95819

Pcut2 thi-g 478.45624 0.13194 4.86031 – – – – 0.99355

Pcut3 fir-g 0.77593 1.65069 × 10−4 7.57733 × 10−7 1.13996 – – – 0.97635

Pcut3 sec-g 0.70944 1.82688 × 10−4 1.11114 × 10−4 0.54574 – – – 0.97724

Pcut3 thi-g 476.92624 0.13287 5.9889 −0.02816 – – – 0.99983

Pcut4 fir-g 0.87763 −5.09861 × 10−4 1.45568 × 10−4 1.16013 0.04321 0.05557 0.05176 0.98071

Pcut4 sec-g 0.78549 2.14583 × 10−4 −0.00124 −11.95154 −3.01627 −10.2719 −8.58015 0.31083

Pcut4 thi-g 407.28526 0.11599 0.17144 0.27149 0.66506 0.62928 0.61987 0.99351

Table 10 ANOVA results of
SEC1~SEC4 Model Test df SS MS F value P value

SEC1 fir-g Regression model 2 420,638.73061 210,319.3653 1523.28627 0.0000

Residual 33 4556.29331 138.06949 – –

SEC1 sec-g Regression model 2 109,192.04059 54,596.02029 356.22153 0.0000

Residual 7 1072.84964 153.26423 – –

SEC1 thi-g Regression model 2 154,466.73386 77,233.36693 1373.82985 0.0000

Residual 16 899.48102 56.21756 – –

SEC2 fir-g Regression model 3 425,079.40091 141,693.13364 39,215.20999 0.0000

Residual 32 115.623 3.61322 – –

SEC2 sec-g Regression model 3 110,249.58267 36,749.86089 14,404.58857 0.0000

Residual 6 15.30756 2.55126 – –

SEC2 thi-g Regression model 3 155,360.72721 51,786.90907 141,554.38701 0.0000

Residual 15 5.48767 0.36584 – –

SEC3 fir-g Regression model 4 425,128.58665 106,282.14666 49,591.84577 0.0000

Residual 31 66.43726 2.14314 – –

SEC3 sec-g Regression model 4 110,256.94205 27,564.23551 17,339.97187 0.0000

Residual 5 7.94818 1.58964 – –

SEC3 thi-g Regression model 4 155,360.84385 38,840.21096 101,240.06041 0.0000

Residual 14 5.37103 0.38364 – –

SEC4 fir-g Regression model 7 424,933.52018 60,704.7886 6499.84622 0.0000

Residual 28 261.50374 9.33942 – –

SEC4 sec-g Regression model 7 110,264.55868 15,752.07981 95,020.16825 0.0000

Residual 2 0.33155 0.16578 – –

SEC4 thi-g Regression model 7 155,361.23409 22,194.46201 49,016.20371 0.0000

Residual 11 4.98078 0.4528 – –
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Table 11 ANOVA results of
Pcut1~Pcut4 Model Test df SS MS F value P value

Pcut1 fir-g Regression
model

1 38.86022 38.86022 61,811.26887 1

Residual 34 0.02138 6.28692 × 10−4 – –

Pcut1 sec-g Regression
model

1 10.39954 10.39954 7259.86453 1

Residual 8 0.01146 0.00143 – –

Pcut1 thi-g Regression
model

1 1.01816 × 107 1.01816 × 107 111,008.01902 1

Residual 17 1559.23805 91.71989 – –

Pcut2 fir-g Regression
model

3 38.86607 12.95536 26,694.4458 0.0000

Residual 32 0.01553 4.8532 × 10−4 – –

Pcut2 sec-g Regression
model

3 10.4043 3.4681 3106.5004 0.0000

Residual 6 0.0067 0.00112 – –

Pcut2 thi-g Regression
model

3 1.01826 × 107 3.39422 × 106 92,035.31661 0.0000

Residual 15 553.19247 36.8795 – –

Pcut3 fir-g Regression
model

4 38.86938 9.71734 24,650.02626 0.0000

Residual 31 0.01222 3.94212 × 10−4 – –

Pcut3 sec-g Regression
model

4 10.40796 2.60199 4281.71105 0.0000

Residual 5 0.00304 6.07699 × 10−4 – –

Pcut3 thi-g Regression
model

4 1.01826 × 107 2.54566 × 106 64,548.51215 0.0000

Residual 14 552.13162 39.43797 – –

Pcut4 fir-g Regression
model

7 38.8726 5.55323 17,273.36601 0.0000

Residual 28 0.009 3.21491 × 10−4 – –

Pcut4 sec-g Regression
model

7 10.37419 1.48203 80.53283 0.01232

Residual 2 0.03681 0.0184 – –

Pcut4 thi-g Regression
model

7 1.01828 × 107 1.45468 × 106 39,198.03348 0.0000

Residual 11 408.22285 37.11117 – –

Table 12 Predicted values and the accuracy of different fitting models

Test no. Measured value Model Predicted value Accuracy Model Predicted value Accuracy

sec-g.3 Pcut = 1.36 SEC = 37.778 Pcut1 1.2646 0.9299 SEC1 30.4089 0.8049

sec-g.3 Pcut2 1.2623 0.9282 SEC2 34.4664 0.9123

sec-g.3 Pcut3 1.2897 0.9483 SEC3 37.4549 0.9914

sec-g.3 Pcut4 1.1239 0.8264 SEC4 31.9773 0.8465

sec-g.4 Pcut = 1.17 SEC = 130 Pcut1 1.1637 0.9946 SEC1 112.4119 0.8647

sec-g.4 Pcut2 1.1832 0.9887 SEC2 128.6415 0.9896

sec-g.4 Pcut3 1.1644 0.9952 SEC3 130.1025 0.9992

sec-g.4 Pcut4 1.1818 0.9899 SEC4 127.9093 0.9839
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because of their lower AIC value. For the Pcut4 model, a
large number of experimental observations gives a better
data fit, but fewer observations gives an unsatisfactory
result. Moreover, SEC4 is unstable when the number of
the observation changed. The results found in Table 13
are consistent with the conclusions of the R-square
analysis.

4 Analysis and discussion

According to Table 2, when spindle speed accelerates
from 0 r/min to a constant rotation speed n (r/min), it
forms a linear relationship with the maximum Pspindle in
acceleration process, Pspindle, acceleration time ta have a

linear relationship with spindle rotation speed n in gener-
al, as found in Fig. 6.

From Table 5, it can be found that a linear relationship
exists between Pcut and n, as shown in Fig. 7. Because of
the variable power of the machine tool, Pspindle demon-
strates linear growth along with n and Pmaterial accounts
only a small portion of the total input power. In experi-
ments of the first group, Pmaterial is 7.84% of Pcut, on
average. In addition, the SEC also increases with increas-
ing n.

Following Table 5, it can also be found that Pmaterial is
significantly affected by the n, as shown in Fig. 8. The
points and line of the same color in Fig. 8 imply the same
cutting parameters vf, ap and ae (namely the same MRR)
but different n. When n changes, Pmaterial changes as well,
but this change is not a linear relationship. For points and
line of the same color in Fig. 8, when n increased from
500 to 2100 r/min, ΔPmaterial(maxPmaterial− minPmaterial)
has a floating range of 0.04~0.08 kW. For example, at the
line of vf = 240 mm/min, vf = 0.04 kW; while at the line

Fig. 5 Accuracy compared of each model

Table 13 AIC value of different model

AIC value Model Group k m RSS

172.41208 SEC1 fir-g 1 35 4556.29331

45.82454 SEC2 fir-g 2 35 115.62300

26.43185 SEC3 fir-g 2 35 66.43726

80.38852 SEC4 fir-g 5 35 261.50374

45.02764 SEC1 sec-g 1 9 1072.84964

8.78010 SEC2 sec-g 2 9 15.30756

2.88147 SEC3 sec-g 2 9 7.94818

−19.71081 SEC4 sec-g 5 9 0.33155

−122.43718 Pcut1 fir-g 1 35 1.00000

−266.21154 Pcut2 fir-g 2 35 0.01553

−274.60103 Pcut3 fir-g 2 35 0.01222

−281.30576 Pcut4 fir-g 4 35 0.00900

−57.99505 Pcut1 sec-g 1 9 0.01146

−60.82585 Pcut2 sec-g 2 9 0.00670

−67.93810 Pcut3 sec-g 2 9 0.00304

−41.49289 Pcut4 sec-g 4 9 0.03681
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Fig. 6 Relation between n and max Pspindle/Pspindle/ta
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of vf = 220 mm/min, ΔPmaterial = 0.08 kW. This float has
obvious influence on Pmaterial, and it should not be ig-
nored. For some rotation speed n, Pmaterial presents a
downward trend, which may be due to obtaining a more
suitable cutting speed vc under that particular n during the
milling process.

Relationship between MRR and SEC from Table 5 is
shown in Fig. 9. MRR is inversely proportional with SEC
on the whole. However, the same MRR does not neces-
sa r i l y ge t t he same SEC. Fo r in s t ance , when
MRR = 4 mm3/s, as n grows from 500 to 2100 r/min,
ΔSEC(maxSEC− min SEC) = 287.5–217.5 = 70 J/mm3,
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namely the SEC ’s growth rate is 32.2%; when
MRR = 10 mm3/s, ΔSEC = 119–89 = 30 J/mm3, the
SEC ’s g rowth ra t e i s 33 .7%; s imi l a r l y, when
MRR = 18 mm3/s, the SEC’s growth rate is 39.3%; when
MRR = 33 mm/s, the SEC’s growth rate is 42.8%; and
when MRR = 42 mm3/s, the SEC’s growth rate is 38.7%.

According to Table 5, relationships between MRR,
Pmaterial, and Pcut can be found in Fig. 10. With MRR
increasing, Pcut and Pmaterial show the tendency of in-
crease in general. Further, find out all experimental data
of the first and second groups at the MRR = 18 mm3/s as
shown in Table 14. Taking the same cutting parameters vf,
ae and ap as the same level, W, in Table 14. Getting a
similar level of Pmaterial when MRR is the same can be
done by changing the W under the same n. Pmaterial is not
completely the same, but the changes in Pmaterial are
minute.

The range of factors n, ap, ae, and vf about Pcut and Pmaterial

are shown in Table 7. The degree of influence of the various
factors about Pcut can be ordered as follows: n > ap > ae > vf.
The degree of influence of the various factors about Pmaterial

can be ordered as follows: ap > ae > n > vf. A trend chart
between the factors and indices can be found in Figs. 11 and
12. Of these, n has influence on Pmaterial.
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Fig. 10 Relation between MRR
and Pcut/Pmaterial

Table 14 Experiment results of fir-g and sec-g at MRR = 18 mm3/s

Test no. n (r/min) W MRR (mm3/s) Pcut (kW) Pmaterial (kW)

fir-g.6 500 W1 18 0.89 0.08

fir-g.11 500 W2 18 0.89 0.08

fir-g.31 500 W3 18 0.89 0.08

fir-g.7 900 W1 18 0.92 0.03

fir-g.12 900 W2 18 0.93 0.04

fir-g.32 900 W3 18 0.93 0.04

fir-g.8 1300 W1 18 1.03 0.09

fir-g.13 1300 W2 18 1.03 0.09

fir-g.33 1300 W3 18 1.01 0.07

fir-g.9 1700 W1 18 1.13 0.08

fir-g.14 1700 W2 18 1.13 0.08

fir-g.34 1700 W3 18 1.12 0.07

fir-g.10 2100 W1 18 1.22 0.09

fir-g.15 2100 W2 18 1.24 0.11

fir-g.35 2100 W3 18 1.21 0.08

sec-g.8 2100 W4 18 1.24 0.11

Note:

W1: vf= 180 mm/min , ap= 2 mm , ae= 3 mm

W2: vf= 120 , ap= 1.5 , ae= 6

W3: vf= 240 , ap= 0.5 , ae= 9

W4: vf= 240 , ap= 1.5 , ae= 3
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5 Conclusion

Establishing a rapid, accurate, and practical energy con-
sumption evaluation model for a machine tool is neces-
sary for the manufacturing industry to save energy and
increase profits. For this purpose, the SEC model of ma-
chine tools was developed and widely used. This paper
discusses the relationships between n, cutting parameter
(vf, ae, and ap), MRR and SEC, Pcut, and Pmaterial using
experimental methods. This was accomplished by
substituting three groups of experimental data into differ-
ent SEC and Pcut models and analyzing the fitting results.
The main conclusions are as follows:

(1) In the process of milling, actual measured Pcut is
different when using different combination of vf, ae,

and ap to get the same MRR. Changes in n cause
changes in Pspindle and Pmaterial. On the other hand,
when n is the same, different combinations of vf, ae,
and ap cause changes in Pmaterial values, but this
change is minute.

(2) The model considering vf, ae, and ap as independent
variables can improve the accuracy of predicting
Pcut, but this accuracy depends on a large amount
of experimental data. The reason is that there are
many unknown coefficients in the formulas, so less
experimental data may lead to the unsatisfactory
fitting and prediction of results. The model consider-
ing MRR as independent variable can get a better
fitting result to predict Pcut, while using less data in
an orthogonal experiment. Hence, using MRR is a
rapid energy consumption evaluation method.
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Considering that Pmaterial and Pcut have small changes
when using the same MRR by combining different of
vf, ae, and ap. In addition, SEC mainly depends on
MRR and n and shows little sensitivity with regards
to vf, ae, and ap.

(3) The improved model SEC3 and Pcut3 demonstrate better
fitting correlation when compared with other models
using the different groups of experimental data. The pro-
posed model put forward in this work which considers
the influence of n on Pmaterial, increases the accuracy of
predicting cutting power in a milling process.

Acknowledgements This research is funded by the National High
Technology Research and Development Program (no. 2014AA041503).
Ziwu Liu is thanked for providing valuable insight and advice.

References

1. Peng T, Xu X (2014) Energy-efficient machining systems: a critical
review. Int J Adv Manuf Technol 72(9–12):1389–1406.
doi:10.1007/s00170-014-5756-0

2. US Energy Information Administration (EIA) Annual Energy out-
look 2015 with projections to 2040, http: / /www.eia.
gov/forecasts/aeo/. Accessed 25 April 2016

3. National Bureau of Statistics of the People’s Republic of China
http://data.stats.gov.cn/adv.htm?m=advquery&cn=C01. Accessed
25 April 2016

4. Cao HJ, Li HC, Du YB, Li XG (2012) Current situation and devel-
opment trend of low-carbon manufacturing. Aeronaut Manuf
Technol 9:26–31. doi:10.16080/j.issn1671-833x.2012.09.014 (in
Chinese)

5. Zhou LR, Li JF, Li FY, Meng Q, Li J, Xu XS (2016) Energy
consumption model and energy efficiency of machine tools: a com-
prehensive literature review. J Clean Prod 112(Part 5):3721–3734.
doi:10.1016/j.jclepro.2015.05.093

6. Duflou JR, Sutherland JW, Dornfeld D, Herrmann C, Jeswiet J,
Kara S, Hauschild M, Kellens K (2012) Towards energy and re-
source efficient manufacturing : a processes and systems approach.
CIRP Ann Manuf Technol 61(2):587–609. doi:10.1016/j.
cirp.2012.05.002

7. Ma J, Ge X, Chang SI, Lei S (2014) Assessment of cutting energy
consumption and energy efficiency in machining of 4140 steel. Int J
Adv Manuf Technol 74:1701–1708

8. Gutowski T, Dahmus J, Thiriez A (2006) Electrical energy require-
ments for manufacturing processes. In: 13th CIRP international
conference on life cycle engineering, Leuven, Belgium, pp. 623–
628

9. ISO14955-1:2014. http:/ /www.iso.org/iso/catalogue_
detail?csnumber=55294. Accessed 25 April 2016

10. Zhang YJ (2014) Energy efficiency techniques in machining pro-
cess: a review. Int J Adv Manuf Technol 71(5–8):1123–1132.
doi:10.1007/s00170-013-5551-3

11. Sebastian T (2012) Energy Efficiency in Manufacturing systems.
Springer, Germany

12. Mori M, FujishimaM, Inamasu Y, Oda Y (2011) A study on energy
efficiency improvement for machine tools. CIRP Ann Manuf
Technol 60(1):145–148. doi:10.1016/j.cirp.2011.03.099

13. Liu F, Liu S (2012) Multiperiod energy model of electromechanical
main driving system during the service process of machine tools. J
Mech Eng 21:132–140 (in Chinese)

14. Lv JX, Tang RZ, Jia S (2014) Therblig-based energy supply model-
ing of computer numerical control machine tools. J Clean Prod 65:
168–177. doi:10.1016/j.jclepro.2013.09.055

15. Zhong QQ, Tang RZ, Lv JX, Jia S, Jin MZ (2016) Evaluation on
models of calculating energy consumption in metal cutting process-
es: a case of external turing process. Int J Adv Manuf Technol 82:
2087–2099

16. Munoz AA, Sheng P (1995) An analytical approach for determin-
ing the environmental impact of machining processes. J Mater
Process Technol 53(3–4):736–758. doi:10.1016/0924-0136(94
)01764-r

17. Kishawy HA, Kannan S, Balazinski M (2004) An energy based
analytical force model for orthogonal cutting of metal matrix com-
posites. CIRPAnn Manuf Technol 53(1):91–94

18. Shao H, Wang HL, Zhao XM (2004) A cutting power model for
tool wear monitoring in milling. Int J Mach Tools Manuf 44(14):
1503–1509. doi:10.1016/j.ijmachtools.2004.05.003

19. Yoon HS, Lee JY, Kim MS, Ahn SH (2014) Empirical power-
consumption model for material removal in three-axis milling. J
Clean Prod 78:54–62. doi:10.1016/j.jclepro.2014.03.061

20. Gutowski T, Branham M, Dahmu J, Jones A, Thiriez A (2009)
Thermodynamic analysis of resources used in manufacturing pro-
cesses. Environ Sci Technol 43(5):1584–1590. doi:10.1021
/es8016655

21. Kara S, Li W (2011) Unit process energy consumption models for
material removal processes. CIRP Ann Manuf Technol 60(1):37–
40. doi:10.1016/j.cirp.2011.03.018

22. Diaz N, Redelsheimer E, Dornfeld D (2011) Energy consumption
characterization and reduction strategies for milling machine tool
use. Glocalized Solutions for Sustainability in Manufacturing—
Proceedings of the 18th CIRP International Conference on Life
Cycle Engineering. Springer Science and Business Media, LLC,
pp 263–267. doi: 10.1007/978-3-642-19692-8-46

23. Li L, Yan JH, Xing ZW (2013) Energy requirements evaluation of
milling machines based on thermal equilibrium and empirical
model l ing. J Clean Prod 52:113–121. doi:10.1016/j .
jclepro.2013.02.039

24. Guo YS, Loenders J, Duflou J, Lauwers B (2012) Optimization of
energy consumption and surface quality in finish turning. Procedia
CIRP 1(1):512–517. doi:10.1016/j.procir.2012.04.091

25. Xie J, Liu F, Qiu H (2016) An integrated model for predicting the
specific energy consumption of manufacturing processes. Int J Adv
Manuf Technol 85(5–8):1339–1346

26. Jia S, Tang RZ, Lu JX (2013) Therblig-based modeling methodol-
ogy for cutting power and its application in external turning.
Comput Integr Manuf Syst 19(5):1015–1024

2400 Int J Adv Manuf Technol (2017) 91:2383–2400

http://dx.doi.org/10.1007/s00170-014-5756-0
http://dx.doi.org/http://www.eia.gov/forecasts/aeo/
http://dx.doi.org/http://www.eia.gov/forecasts/aeo/
http://dx.doi.org/http://www.iso.org/iso/catalogue_detail?csnumber=55294
http://dx.doi.org/10.16080/j.issn1671-833x.2012.09.014
http://dx.doi.org/10.1016/j.jclepro.2015.05.093
http://dx.doi.org/10.1016/j.cirp.2012.05.002
http://dx.doi.org/10.1016/j.cirp.2012.05.002
http://dx.doi.org/http://www.iso.org/iso/catalogue_detail?csnumber=55294
http://dx.doi.org/http://www.iso.org/iso/catalogue_detail?csnumber=55294
http://dx.doi.org/10.1007/s00170-013-5551-3
http://dx.doi.org/10.1016/j.cirp.2011.03.099
http://dx.doi.org/10.1016/j.jclepro.2013.09.055
http://dx.doi.org/10.1016/0924-0136(94)01764-r
http://dx.doi.org/10.1016/0924-0136(94)01764-r
http://dx.doi.org/10.1016/j.ijmachtools.2004.05.003
http://dx.doi.org/10.1016/j.jclepro.2014.03.061
http://dx.doi.org/10.1021/es8016655
http://dx.doi.org/10.1021/es8016655
http://dx.doi.org/10.1016/j.cirp.2011.03.018
http://dx.doi.org/10.1007/978-3-642-19692-8-46
http://dx.doi.org/10.1016/j.jclepro.2013.02.039
http://dx.doi.org/10.1016/j.jclepro.2013.02.039
http://dx.doi.org/10.1016/j.procir.2012.04.091

	An improved cutting power model of machine tools in milling process
	Abstract
	Introduction
	The machine tool energy consumption model and hypothesis
	The introduction of basic model
	Improved cutting power model and some considerations

	Experimental details
	Standby power and auxiliary power
	Idle power
	Cutting power
	Cutting power model validation and comparison

	Analysis and discussion
	Conclusion
	References


