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The study of the sliding process between asperities on rough surfaces can improve the understanding of
wear mechanisms. The sliding interaction between asperities is analyzed in this paper using both a semi-
analytical model and a finite element model. Power-law hardening materials are considered, and the
asperity profiles are assumed to be a parabolic approximation to the cylinder. The effects of strain
hardening exponents on some contact parameters are explored with the finite element model. Results
show that the faster semi-analytical model agrees well with the finite element model for materials with
larger hardening exponents, while for materials with smaller exponents, the errors would preclude its
use. As the exponent decreases, the dragging effect in sliding becomes more notable and influences the
contact parameters more significantly. Friction shows a significant effect in the sliding process after
preliminary consideration, which should be explored in detail further.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Sliding is present in many engineering applications where
there are moving surfaces and plays an important role in
mechanical behavior, such as friction and wear [1–9]. As is well-
known, engineering surfaces are rough at the microscopic scale,
containing distributions of asperities. When relative motion occurs
between two surfaces, the asperities will interact with each other,
and a fundamental issue is the mechanical effects of sliding
asperity interaction.

Previous research in the literature has focused on asperity
interaction. Normal contact is reviewed first. Hertz [10] considered
contact between elastic, frictionless solids. Later, Greenwood and
Williamson [11] advanced Hertz theory and gave a statistical
description of surface parameters to study the normal contact
between rough surfaces; research by others followed [12,13].
Kogut and Etsion [14] developed a finite element (FE) model to
study the elastic–plastic contact between a rigid flat and a hemi-
sphere under frictionless condition and gave dimensionless
expressions for the contact parameters. Jackson and Green [15]
improved upon the FE model with finer meshes, and explored the
effects of geometry and material on hardness. These two FE
models focused on the loading process. Etsion et al. [16] developed
.
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another FE model to consider also the unloading process of an
elastic–plastic loaded spherical contact and gave equations for the
residual interference after complete unloading. Later, Zhao et al.
[17] studied the frictionless contact of a power-law hardening
elastic–plastic sphere with a rigid flat. They explored the effects of
the strain hardening exponents on the contact parameters during
the loading and unloading processes. The residual interferences
after complete unloading at different strain hardening exponents
were also given.

In addition to the above models concentrating on the normal
contact between asperities, other investigations studied sliding
asperity interaction. Hamilton and Goodman [18] studied circular
sliding contact and gave analytical expressions and graphs of the
yield parameter and tensile stress distribution. Hamilton [19] then
presented improved equations for the stresses beneath a sliding,
normally loaded Hertzian contact. Tangena and Wijnhoven [20]
first gave a two-dimensional (2D) FE model to describe the
interaction between an elastic–plastic asperity and a rigid asperity,
which moved through the soft asperity. Faulkner and Arnell [21]
developed the first three-dimensional (3D) FE model to simulate
the sliding interaction between elastoplastic hemispherical aspe-
rities. With this model, they obtained the normal and shear forces
during the sliding. Vijaywargiya and Green [22] gave a thorough
investigation of the forces, deformations, stress and energy loss
during the sliding process between two elastic–plastic cylinders
with the FE method. Jackson et al. [23] used a more rapid semi-
analytical method to study the line-hardening elastic–plastic
merical analysis of sliding asperity interaction for power-law
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Nomenclature

A Contact area
Ac Critical contact area of asperity summit
Ac(r) Critical contact area at the contact point
AHertz Hertzian contact area
C Critical yield stress coefficient
E1, E2 Young's moduli of two asperities 1 and 2
E0 Combined Young's moduli
F Asperity contact force
F1, F2 Contact force of asperity 1 and 2
Fc Critical contact force of asperity summit
Fc(r) Critical contact force at the contact point
FHertz Hertzian contact force
Fn Normal component of the contact force
Ft Tangential component of the contact force
i A arbitrary sliding step number
j Total number of sliding step
k Empirical factor in semi-analytical model
n Hardening exponent

R Radius of summit of asperity
R1, R2 Radii of summits of asperities 1 and 2
Rs Sum of asperity summit radii
R(r)1, R(r)2 Radii at the contact point of asperities 1 and 2
Rv(r) Equivalent radius at the contact point
r Horizontal position of the upper asperity
Sy Yield strength
U Energy loss in the sliding process
Uc Critical elastic energy
w Interference
w1, w2 Interference of asperities 1 and 2
wc Critical interference of asperity summit
wc(r) Critical interference at the contact point
wres Residual interference
wy Interference defined by Greenwood and Tripp [12]
y Maximum vertical deformation on the profile of

asperity 1
α Contact angle between two asperities
δ Overlap of the two asperities
ν1, ν2 Poisson ratio of asperities 1 and 2
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asperity sliding process. They treated sliding as a process having
many loading and unloading stages by using the empirical
expressions of contact parameters given in the above normal
contact models [12–14]. Additionally, they developed a FE model
to formulate empirical expressions for the tangential and normal
forces in sliding interaction, and compared them with the semi-
analytical model. Results showed that these two models could
match well for some but not all cases. Mulvihill et al. [24] devel-
oped a FE model for the interaction of an elastic–plastic asperity
junction based on cylindrical or spherical asperities. They con-
sidered large overlaps, interface shear strength and material fail-
ure and derived a means for the prediction of friction coefficients.
Dawkins and Neu [25] developed a crystal plasticity finite element
model to consider the influence of the crystal orientation in the
sliding process. It suggested that the plastic strain and stress fields
obtained by crystal plasticity are considerably different with those
given by conventional isotropic J2 plasticity. This is an interesting
study, and the crystal plasticity will be considered in the future.
However, in this work, the continuum plasticity will still be used
like some previous works [22,23]. Fleck et al. [26] gave the strain
gradient theory of rate independent plasticity, however, many
similar finite element models developed in [14–17] considered the
metal materials (e.g. steel, copper etc.) without the strain-gradient
approach, where the grain sizes of the materials were just like
those in this work. Those models were verified by the in-situ and
real-time optical experimental investigations [27,28]. Therefore, it
might not be necessary to consider the strain-gradient approach at
the current scale, and for the current grain sizes, though the
strain-gradient approach might be a useful method.

From the literature survey, it is clear that considerable research
about sliding asperity interactions has been conducted. However,
in most of the models, the elastic–plastic materials of the aspe-
rities were assumed as linear hardening materials with a tangent
modulus of about 2% of the Young's modulus, and therefore the
power-law hardening materials requires additional investigation.
In addition, the shapes of the asperities were usually treated as a
sphere in 3D or a cylinder in 2D. While as suggested by [29,30], the
parabola might be a more realistic profile of the asperity in 2D at
least in some cases. It is because (1) the parabola could at least
reflect the characteristic that the radii at the contact point could
not be identical in the contact process, which might be a slight
improvement; and (2) the asperity profile could be fitted with
Please cite this article as: B. Zhao, et al., Semi-analytical and nu
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different kinds of parabola, which might be more feasible to catch
the realistic profiles. Therefore, the sliding process between the
asperities having parabolic profiles will be studied for power-law
hardening materials, using a semi-analytical method and a FE
model. The effect of strain hardening exponents on the contact
parameters will be explored, including the vertical deformation,
stress, contact area, contact forces and the energy loss in the
sliding process. The deformation of the nodes on the surface can
reveal how the asperity deforms with the tangential forces, and
the stress contour can reveal the stress distribution and evolution,
which can predict the appearance of wear. Also, the single tan-
gential loading process in this work is the foundation of the reci-
procating sliding related to wear due to the fatigue, or the sliding
process for two surfaces. Thus this work might give some useful
results for the wear community especially for someone who
focuses on the power-law hardening materials.

The assumptions used here are as follows:

(1) Sliding is assumed to be frictionless. The frictionless condition
omits the friction which really exists between the asperities,
and thus only the effect of plasticity on the sliding are con-
sidered. This assumption might be not realistic, however, it
can isolate the effect of plasticity. In addition, some friction
cases are also considered with the FE model, and are com-
pared with the cases under frictionless condition to explore
the effect of the friction.

(2) The effect of the deformation of the bulk on regions close to
the contact is not considered;

(3) Sliding is simulated as a quasi-static process;
(4) Temperature effects on the sliding process are ignored.
2. Semi-analytical model

From results of previous research under frictionless condition
[15,16,31,32], Jackson et al. [23] developed a semi-analytical model
for spherical asperity interaction, regarding the sliding process as a
many loading-unloading process. As suggested in [23], the sim-
plified unloading-loading process could simulate the sliding pro-
cess to some extent, though the actual process is more complex.
The semi-analytical model here follows their method with some
improvement. Power-law hardening materials are considered, and
merical analysis of sliding asperity interaction for power-law
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the profiles of the asperities are assumed as parabolas. The power-
law materials can extend the material scope for the sliding pro-
cess, and the parabola geometry can extend the range of the
asperity shape. First, the contact force in the loading process of a
loading-unloading process is calculated on the initial parabolic
geometry, and the interference for each asperity is obtained; then
the unloading process in the loading-unloading process is con-
sidered and the residual interference for each asperity is derived;
finally, considering the effect of the residual interference on the
parabolic profile (actually the radius of the asperity at the contact
point), the contact force in the next loading step is computed. The
process is given in detail as follows.

The elastic–plastic power-law hardening material is introduced
first, where the plastic behavior obeys the J2 flow theory and
satisfies a power hardening law reconstructed by the Ramberg–
Osgood curve [33]. The relation of the strain ε to the stress σ for
power-law hardening materials is given as:

σ ¼
Eε;σrSy

SyððE=SyÞεÞn;σ4Sy

(
ð1Þ

where Sy and E are the yield strength and Young's modulus, and n
is a strain hardening exponent varying from 0 to 1. A larger n
means the material is more elastic, while the smaller n means the
material is more plastic. For the two extreme cases, n¼1 is the
purely elastic case, while n¼0 is the elastic-perfectly plastic case.
Some realistic n-values for common engineering materials were
given as follows [34]: for AlZn6CuMgZr (ISO) aluminum alloy,
n¼0.21; and for 18CrMo4 (ISO) steel, n¼0.15.

Two asperities in sliding whose profiles are approximated as
parabolas are shown in Fig. 1. The difference in contact between
the parabola asperities and the spherical asperities is as follows:
for the contact between parabola asperities, the radii of the
asperity at the contact point change all the time in the sliding
process; while for the contact between spherical asperities, the
radii of the asperity at the contact point are identical. The upper
asperity 1 slides frictionless across the lower asperity 2, whose
base is fixed during the entire sliding process. Several parameters
are given as follows: δ is the overlap of the two asperities; α is the
contact angle; r is the horizontal position of the upper asperity,
and r¼0 is the position of the axis of symmetry for the lower
asperity; F is the contact force and Fn, Ft are its normal and tan-
gential components, whose expressions are given as:

Fn ¼ F cos α
Ft ¼ F sin α

:

(
ð2Þ

R1 and R2 are the radii of the summits of asperity 1 and 2, while
R(r)1 and R(r)2 are the radii at the contact point. The relation for R
and R(r) is given as the following expression [35]:

RðrÞ ¼ R 1þr2=Rs
2

� �3=2
: ð3Þ
Fig. 1. Schematic of sliding asperity interaction. (a) The asperities in slidin
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The interferences in different directions are given by w, wy,
while w1, w2 represent the actual deformations of asperity 1 and
asperity 2. The expressions of w, wy and α can be obtained by the
geometric relationship [35]:

w¼wy cos α ð4Þ

wy ¼ δ�r2=2Rs ð5Þ

cos α¼ 1þr2=Rs
2

� ��0:5
ð6Þ

where Rs ¼ R1þR2 is the sum of the radii of the summits.
As assumed earlier, the sliding is treated as a quasi-static pro-

cess, where the continuous sliding process is divided into many
static steps. Here, the total number of steps can be assumed as j,
while i represents the number of an arbitrary step in the “sliding”
process. When asperity 1 “slides” across asperity 2 from the step i
to iþ1, the process can be considered as an unloading process
from the step i and a subsequent loading process to the step iþ1.
Some existing loading and unloading models for power-law
hardening materials are adopted as given below.

The loading process for power-law hardening materials was
studied by Zhao et al. [17], and the following dimensionless
expressions of the contact force F and contact area A were obtained:

F=Fc¼
ðw=wcÞ1:5; for 0rw=wcr1

b1ðw=wcÞb2 ; for 1rw=wcr6

b3ðw=wcÞb4 ; for 6rw=wcr110

8>><
>>: ð7Þ

A=Ac¼
w=wc; for 0rw=wcr1
c1ðw=wcÞc2 ; for 1rw=wcr6
c3ðw=wcÞc4 ; for 6rw=wcr110

8><
>: ð8Þ

where b1, b2, b3, b4 and c1, c2, c3, c4 are functions of strain hardening
exponent n obtained by fitting the finite element results,

b1 ¼ �0:07598nþ0:96081
b2 ¼ 0:10725nþ1:43352
b3 ¼ �0:82815nþ1:68998
b4 ¼ 0:31831nþ1:21111
c1 ¼ �0:01763nþ1:13173
c2 ¼ �0:04715nþ1:03997
c3 ¼ 0:23235nþ0:94066
c4 ¼ �0:18325nþ1:14559

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð9Þ

The expressions of the critical interference wc, contact force Fc
and contact area Ac were adopted as given by Jackson and Green
[15], and were revised since the radii at the contact point should
be considered as the actual contact radii.

wcðrÞ ¼ πCSy=2E0
� �2RvðrÞ ð10Þ
g. (b) The contact region showing interferences in different directions.
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Fig. 2. Finite element model.
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FcðrÞ ¼ 4E0RvðrÞ1=2wcðrÞ3=2=3 ð11Þ

AcðrÞ ¼ π3ðCSyRvðrÞ=2E0Þ2 ð12Þ
where C is related to the Poisson's ratio ν of the softer material, by
C¼1.295exp(0.736v), and E0 is the combined Young's modulus for
the two contact surfaces:

1=E0 ¼ 1�ν21
� �

=E1þ 1�ν22
� �

=E2 ð13Þ
Here E1, E2 and ν1, ν2 are Young's moduli and Poisson ratios of

two contact asperities respectively. The equivalent contact radius
at the contact point is Rv(r), which is given as the following
expression [35]:

RvðrÞ ¼ RðrÞ1RðrÞ2
RðrÞ1þRðrÞ2

: ð14Þ

Considering that the values of the contact forces of asperity
1 and 2 (i.e. F1 and F2) are the same, only the upper asperity 1 was
studied, and its contact force and area were calculated with Eqs.
(7) and (8). Thus the interference w in Eqs. (7) and (8) should be
replaced by the interference of asperity 1, w1 (see Fig. 1), which
can be derived from the relation:

w1þw2¼w

F1¼ F2

�
ð15Þ

And the expression of w1 can be obtained as:

w1 ¼w 1þ FcðrÞ2=FcðrÞ1
� �t wcðrÞ1=wcðrÞ2

� �h i�1
� �

ð16Þ

where t is related to the functions b2 and b4,

t ¼
2=3; 0owr1
1=b2; 1owr6
1=b4; 6owr110

:

8><
>: ð17Þ

When the asperity slides from step i to step iþ1, the asperity is
unloaded from the current step i with some elastic rebound and
can not return to the original shape. The residual interferences wres

were given by Zhao et al. [17]:

wres=w¼ 1�1= w=wc
� �e� �2

ð18Þ

where e is a function of n, which can be expressed as:

e¼ �0:22471n2�0:17406nþ0:39877 ð19Þ
The residual deformation changes the geometric characteristics

of the asperity, and affects the contact radii at the next step iþ1, as
revealed by Jackson et al. [23]:

RðrÞiþ1 ¼ RðrÞi�kmax ½wres�0-i ð20Þ
Here, R(r)i and R(r)iþ1 are the contact radii at step i and iþ1

respectively. k is an empirical factor related to the material prop-
erty including the hardening exponent n, representing the amount
of residual deformation and its affect on the contact radii at the
next step, and its values are determined by fitting the finite ele-
ment results.

To compare results with the numerical model later, the profiles
of the asperities are approximated as two arbitrary parabolas
obeying the following equations:

y=R¼ ðxþ0:3RÞ2=ð2RÞ�δ=R; upper asperity 1
�x2=ð2RÞ; lower asperity 2

:

(
ð21Þ

The radii at the summit, R, are 50 μm for each of the two
asperities. In addition, the ratio of Young's modulus to yield stress
(Sy), E/Sy was set as 500, since it has negligible effect on contact
parameters [36], and the Poisson's ratio ν was set to 0.3. The strain
hardening exponent n ranged from 0.1 to 0.9, and the asperity
overlaps ranged from δ¼0.001R to δ¼0.007R. The range of
Please cite this article as: B. Zhao, et al., Semi-analytical and nu
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asperity overlaps is determined due to two considerations: (1) the
computational time is up to 14 hours for one case under the cur-
rent overlap. When the overlap increases, the computational time
will increase quite a lot; (2) The semi-analytical model only
effective only for the cases w1o110wc, which is limited by pre-
vious expressions shown in Eqs. (7) and (8). Under the current
overlap, the semi-analytical was roughly in the effective range, e.g.
w1¼46.2wc at δ¼0.001R. For larger overlaps, the semi-analytical
model might not effective. The sliding process of the asperities
having the given shapes and material properties was studied. The
calculations were done by Matlab 2015a for less than 3 s on a PC
with 3.00 GHz processor and 16 GB of RAM. The results will be
shown in detail later.
3. Numerical model

A two-dimensional plane strain FE model was developed using
the software ANSYS 16.1, as shown in Fig. 2. Two asperities were
assumed as the shapes given in Eq. (21), with a tangential offset r
in the X direction and an asperity overlap δ in the Y direction. The
zone close to the contact was of most interest and an extremely
fine mesh was used to capture the curvature of the asperity and to
detect the contact area radius accurately, while the zone far away
from the contact had a coarser mesh. The asperities were meshed
by eight-node PLANE 183 elements. The 2D three-node surface-to-
surface contact element (CONTA172) and nonflexible two-node
target element (TAEGET169) were used to simulate the contact
between the asperities. The model consisted of 139,323 nodes and
46,033 elements including 45,737 of PLANE 183 and 146 of
CONTA172 elements.

A piecewise linear/power hardening was set in ANSYS to take
into account the elastic–plastic material property. The Young's
modulus (E), yield stress (σy), and Poisson's ratio (ν) were set as
the values given in Section 2. The von Mises yield criterion was
employed to describe the transition from elastic to plastic defor-
mation, and a frictionless condition was used in the contact. The
boundary conditions are as shown in Fig. 2: (1) Nodes at the base
of the lower asperity were restricted in all directions; (2) Nodes at
the base of the upper asperity were constrained to move in the Y
direction, but were allowed to move freely in the X direction. The
displacement in the X direction was applied to the nodes at the
base of the upper asperity step by step to simulate the sliding
process, which saved some computational cost. This treatment has
been verified in some previous works (e.g. [22,37]), considering
the contact and sliding process. The vertical deformation, stress,
contact area, contact force and energy loss were calculated and
recorded at each step. The computational time ranged from 0.5 h
to 14 h for different cases on a PC with 3.00 GHz processor and
merical analysis of sliding asperity interaction for power-law
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16 GB of RAM, which was much longer than that of the semi-
analytical model.

To ensure the convergence and accuracy of the mesh, the mesh
density was doubled iteratively and the automated meshing
technique in ANSYS was changed, while the results changed no
more than 1.4%, which showed the meshing was reliable. Fur-
thermore, to verify the validity of the FE modeling method, the
contact between two purely elastic asperities which were aligned
vertically with respect to the axes of symmetry without sliding
was studied, and the contact parameters were compared with the
Hertz results [10]. The errors of the contact force and contact area
were less than 2.1%. Also, the sliding process between spherical
asperities for elastic-perfectly plastic materials described in the
previous research [23] was studied by building an FE model with
the similar method in this work. By comparison, the errors of
contact forces were less than 3.7%. These verifications suggest the
FE model is reliable.
4. Results and discussions

The following results are obtained in the sliding between
asperities, whose hardening exponents n changes from 0.1 to
0.9 at a range of asperity overlaps δ from 0.001R to 0.007R.

To compare the FE results with the semi-analytical results,
Figs. 3–5 show the normal force, tangential force and contact area at
some selected cases where n¼0.1, 0.5 and 0.9 at the asperity overlap
δ¼0.001R. The contact force is computed from the reaction forces of
the nodes at the bottom of the upper asperity, and the contact force
is computed from the reaction forces of the nodes at the bottom of
the upper asperity, and the contact area is calculated by summing
the area components of all contact elements directly by the com-
mand in ANSYS. The empirical factor k¼2 was used in the semi-
analytical model as a best fit the FE results for all the current cases
(different n) as shown in Figs. 3–5. What should be noted is that the
values of k are based on the finite element results in this work, and
if the finite element solutions are not available, it will be difficult to
determine the parameter k. Actually, the authors expect finding the
empirical expressions of k for materials with different n and under
different normal preloads. However, it might be much more difficult
than expectation, which might be considered further in the future.
The semi-analytical model is effective only for the cases w1o110wc,
as revealed in Eqs. (7) and (8). After verification, the maximum
interference w1 is about 46.2wc at δ¼0.001R, and the semi-
analytical model appears appropriate to be used. The normal force
Fn and the tangential force Ft were normlized to the Hertz contact
force FHertz, which was obtained in the contact between two purely
elastic asperities aligning vertically without sliding at δ¼0.001R,
and the contact area Awas also normalized to the Hertz contact area
Fig. 3. The normal contact force in the sliding process at δ¼0.001R obtained by the sem
n¼0.1, (b) n¼0.5, (c) n¼0.9.

Please cite this article as: B. Zhao, et al., Semi-analytical and nu
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AHertz. It can been seen from Figs. 3–5 that the shapes and trends of
the semi-analytical results are very similar to those of FE results for
both the contact forces and contact area. When the exponents n is
closer to 1.0 (e.g. n¼0.9), the difference between the semi-analytical
and FE results are smaller. The maximum errors of the normal force,
tangential force and contact area are 6.07%, 11.8% and 8.1% respec-
tively in the case n¼0.9, while they increase much more to 31.2%,
40.5% and 27.3% in the case n¼0.1. In addition to the small errors in
developing the FE model, more errors may arise from the simplifi-
cation in the semi-analytical model that the plastic deformation is
considered as residual displacement. For materials with smaller n,
the plastic deformation will be larger, where the simplification plays
a more important role in the semi-analytical results and explains
the larger errors for the materials with lower n.

The semi-analytical model is many orders of magnitude faster
than the FE model. However, from the comparison above, it seems
to be more appropriate for materials with higher exponents n, and
while not so accurate for materials with very low exponents.
Another limitation of the semi-analytical model is that it is
applicable only for w1o110wc. Thus the FE method might be a
better way to study the effect of hardening exponents on the
sliding contact parameters at larger overlaps later. However, the
semi-analytical model gives some helpful insights that the sliding
process could be explored from empirical expressions. A more
improved analytical model still needs to be developed by con-
sidering the effect of the plastic deformation for power-law
hardening materials with low n.

Next the contact parameters were studied using the FE model,
including the maximum vertical deformation, contact stress, contact
area, normal and tangential forces, and energy loss in the sliding
process for materials with differing hardening exponents n ranging
from 0.1 to 0.9 as asperity overlap δ changed from 0.001R to 0.007R.

Since the two asperities have the same material properties, the
deformation in these two asperities is identical. The maximum
vertical deformation in the Y direction, y, of the nodes on the
profile of the upper asperity were recorded at each sliding step.
The normalized values at the asperity overlaps δ¼0.007R are
shown in Fig. 6. As expected, the deformation increases with the
increase of the sliding displacement until it reaches its maximum
values. The maximum values of y take place after the upper
asperity passes the symmetry axis (r¼0) because of material
dragging and pile-up effects, and they appear later and larger for
smaller n since the dragging effect is more significant for smaller n
materials. After the maximum values, the deformation decreases
as the sliding continues. When two asperities separate from each
other, the plastic deformations remain at the final data points on
each curve, which can be termed the vertical residual deformation.
It can be found that the residual deformations are larger for
smaller n cases.
i-analytical and FE models for materials with different hardening exponents n. (a)
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Fig. 4. The tangential contact force in the sliding process at δ¼0.001R obtained by the semi-analytical and FE models for materials with different hardening exponents n. (a)
n¼0.1, (b) n¼0.5, (c) n¼0.9.

Fig. 5. The contact area in the sliding process at δ¼0.001R obtained by the semi-analytical and FE models for materials with different hardening exponents n. (a) n¼0.1, (b)
n¼0.5, (c) n¼0.9.

Fig. 6. The maximum vertical deformation in the Y direction, y, of the nodes on the
profile of the upper asperity in the sliding process at δ¼0.007R obtained by the FE
model for materials with exponents n changing from 0.1 to 0.9.
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Fig. 7 shows the real stress contours of the asperities of n¼0.3 and
0.5 in the sliding process at three sliding displacements r¼�0.088R,
0 (two in-contact cases) and 0.22R (after-contact case) at δ¼0.007R.
It is clear in Fig. 7 that the stresses in these two asperities are anti-
symmetric since they have the same material properties and geo-
metries. When the asperities slide, smaller nmaterials result in larger
stresses at the identical sliding displacement. In addition, the stresses
show a tendency to move towards the leading edge along the sliding
direction, which implies resistance to sliding. The trend is more
significant for smaller n cases because the dragging and pile-up
Please cite this article as: B. Zhao, et al., Semi-analytical and nu
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effects are more notable for the more plastic materials. Also because
of shear dragging, it can be seen from the stress contours that when
r¼0, i.e. two asperities aligned vertically with respect to the axes of
symmetry, the tangential forces could not be zero and will be shown
in more detail later. When two asperities separate from each other
after contact (e.g. r¼0.22R in Fig. 7), the stresses in each asperity are
residual stresses, which are not symmetric. The regions of the resi-
dual stress at the trailing edge are larger than the leading edge due to
the dragging effect, which is more noticeable for the smaller n cases.

Fig. 8 shows the contact area A, normalized by the Hertz results
AHertz, for different exponents n at the overlap δ¼0.005R. It is clear
that the contact areas are not symmetric for all cases, and all reach
the maximum values before the sliding displacement r¼0. The
smaller n leads to the earlier and higher maximum contact area in
the loading phase of the sliding, because in sliding, the material
flattens and flows sideways since the material is being dragged
and piled up. For more plastic materials, it is easier to flow plas-
tically away from the contact surface, which causes the maximum
contact area to occur earlier and to have a larger value.

Figs. 9 and 10 present the normal force Fn and the tangential
force Ft in the sliding process which are normalized to the Hertz
force FHertz for different n at δ¼0.005R, and show that both the
normal and tangential forces are not symmetric. In Fig. 9, the
curves of the normal forces in sliding are more skewed for large n
materials, which is attributed to the more elastic resistance. The
maximum normal forces appear before the vertical alignment axis
(r¼0), and for the smaller n cases, they occur earlier, but the
values are smaller. In addition, the curves for smaller n cases go
back to the zero later signifying that the two asperities separate
from each other later, a result which also can be found for the
tangential forces in Fig. 10, because of the more significant drag-
ging effect. In Fig. 10, the positive maximum tangential forces also
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Fig. 7. The stress contours for sliding asperities whose hardening exponents n¼0.3 and 0.5 at different sliding displacement r¼�0.088R, 0 and 0.22R at δ¼0.007R.

Fig. 8. The contact area in the sliding process at δ¼0.005R for materials with
hardening exponents n changing from 0.1 to 0.9.

Fig. 9. The normal force in the sliding process at δ¼0.005R for materials with
hardening exponents n changing from 0.1 to 0.9.
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appear earlier and are smaller when the exponent n is smaller.
After reaching the maximum values, the tangential forces
decrease. However, the tangential force will not return to zero at
r¼0 since permanent plastic deformation has occurred, which is
also revealed by the stress contours in Fig. 7. For smaller n mate-
rials, the plastic deformation is larger, leading to a higher values at
r¼0 and lower negative maximum values in the subsequent
sliding process.

Fig. 11 shows the energy loss U in the sliding process for dif-
ferent n at asperity overlaps δ¼0.001R, 0.003R, 0.005R and 0.007R,
which are normalized by the critical elastic energy Uc. As the
Please cite this article as: B. Zhao, et al., Semi-analytical and nu
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frictionless condition is adopted, the energy loss only comes from
the material plasticity. The expression of Uc is given as follows
[38]:

Uc ¼
π 1:33075þ0:887825νþ0:54373ν2
� �

Sy
� �5

R3

60ðE0Þ4
ð22Þ

where R is the radii of the summits of asperity. The energy loss is
considered on the basis of the tangential force in Fig. 10, by cal-
culating the difference of the area above the X axis (energy
invested in sliding) and the area beneath the X axis (energy in the
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Fig. 10. The tangential force Ft in the sliding process at δ¼0.005R for materials
with hardening exponents n changing from 0.1 to 0.9.

Fig. 11. The energy loss in the sliding process at asperity overlaps δ¼0.001R,
0.003R, 0.005R and 0.007R for materials with hardening exponents n changing
from 0.1 to 0.9.

Fig. 12. The tangential force Ft in the aforementioned frictionless (μ¼0) and fric-
tional (μ¼0.1) sliding process at δ¼0.001R for n¼0.1, 0.5 and 0.9.

Fig. 13. The energy loss in the aforementioned frictionless (μ¼0) and frictional
(μ¼0.1) sliding process at asperity overlaps δ¼0.001R for n¼0.1, 0.5 and 0.9.
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rebound). It can be seen that as the overlap increases, the energy
loss increases and more notably for smaller n materials. It should
be noted that the values of the dimensionless energy loss U/Uc for
different n at δ¼0.001R ranging from 14.1 to 446.4, very close to
0 but not in fact. Furthermore, the energy loss for smaller n is
larger for the same overlap due to more plastic deformation. The
results given by the FE model can be fitted to the following
equation:

U=Uc ¼m1þm2ð1000δ=RÞþm3ð1000δ=RÞ2 ð23Þ

where m1, m2 and m3 are functions related to the hardening
exponents n:

m1 ¼ �1879þ20440n�35857:8n2þ17494:8n3

m2 ¼ 1041:9�24075:3nþ46654n2�23978:6n3

m3 ¼ 1312:1þ2562:8n�9524n2þ5782n3

:

8><
>: ð24Þ

Actually, friction plays an important role in the real sliding pro-
cess, and its effect due to contact friction and local plasticity are
expected to be very significant especially under relatively large
asperity overlaps. Ignoring friction physically speaking is not valid.
Please cite this article as: B. Zhao, et al., Semi-analytical and nu
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Therefore, the sliding process under the frictional condition is pre-
liminarily analyzed next with the FE model, and is compared with
the aforementioned frictionless cases. The coefficient of friction μ is
set as 0.1, which is the only difference from the frictionless FE
model. The cases at the asperity overlap δ¼0.001R are considered,
and the tangential force Ft normalized to the Hertz force FHertz is
shown in Fig. 12. It can be seen from Fig. 12 that all the curves
plotted for the frictional sliding process show positive values, which
is not similar to the frictionless curves. For the frictional cases, the
values of Ft are much larger than those for the frictionless cases, and
the maximum values appear before the vertical alignment axis
(r¼0). For the materials with larger n, the maximum values of Ft is
larger and the curves go back to zero earlier than the smaller n
materials. In the frictional sliding process, the area under the tan-
gential force curve is much larger than that in the frictionless sliding
process, which reveals the friction causes much larger energy loss as
shown in Fig. 13. It is expected that the energy loss in the frictionless
sliding process is purely due to the plastic deformation; while in the
frictional sliding process, the energy loss is attributed to both the
local plasticity and the friction, and the part caused by the friction is
significantly large. This is just a preliminary consideration about the
frictional sliding process, which gives some inspiration about the
effect of the friction. A more detail study is still needed, which will
be considered in the future.
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5. Conclusions

To study the sliding interaction between asperities whose
profiles were approximated as parabolas for power-law hardening
materials, both a semi-analytical model and a numerical model
were developed. The semi-analytical model regarded the sliding
process as consisting of many loading and unloading processes,
and the effect of the plastic deformation with the residual defor-
mation were considered. The results obtained from these two
models were compared, and in addition, the effect of the strain
hardening exponents on the contact parameters was investigated
using the FE model. Two main conclusions were obtained:

(1) The semi-analytical model was much faster than the FE model
to solve the same sliding problem, but it could only be applied
for those cases where the interferences were in an appropriate
range (0ow1/wco110). The semi-analytical results agreed
well with the FE model for the materials with larger n, while
for the smaller n cases, the larger errors would preclude its
use. Since the hardening exponents for many realistic materi-
als are relative small or moderate, the applicability of the
semi-analytical solution developed for realistic situations
needs further improvement. However, the semi-analytical
model might give some helpful insights that the sliding
process could be explored from empirical expressions.

(2) As the exponents n decreased, the dragging effect was more
notable, leading to a more significant influence on the contact
parameters. For smaller n cases, the vertical displacement in
sliding and the residual deformation after sliding were both
larger, and the stresses also became larger and moved more
towards the leading edge along the sliding direction. The
contact area and energy loss increased, while the maximum
values of the normal and tangential forces decreased with the
decrease of n. Friction significantly affects the contact para-
meters in the sliding process, enlarging the tangential forces
and energy loss, which should be considered in detail further.
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